Maths Grade 7 Knowledge Organiser

7/1 Use fractional & negative indices

• Rules when working with indices:

 $\mathbf{a}^{\mathsf{x}} \times \mathbf{a}^{\mathsf{y}} = \mathbf{a}^{(\mathsf{x} + \mathsf{y})}$ $\mathbf{a}^{\mathsf{x}} \div \mathbf{a}^{\mathsf{y}} = \mathbf{a}^{(\mathsf{x} - \mathsf{y})}$ $a^3 \times a^2 = a^{(3+2)} = a^5$ $a^7 \div a^3 = a^{(7-3)} = a^4$ $2^3 \times 2^2 = 2^{(5)} = 32$ $3^7 \div 3^3 = 3^{(4)} = 81$ $(a^{x})^{y} = a^{(x y)} a^{0} = 1$ $(a^3)^2 = a^6$ $(a^3)^2 = a^6$ $y^0 = 1$ $(2^3)^2 = 2^6 = 64$ $8^0 = 1$ $a^{x/y} = (\sqrt[y]{a})^{x}$ a^{-×} = <u>1</u> a× $a^{2/5} = (\sqrt[5]{a})^2$ a⁻³ = <u>1</u> a³ $2^{-3} = \underline{1} = \underline{1}$ $32^{2/5} = (\sqrt[5]{32})^2 = 2^2$ 2³ 8 a^{-x/y} = <u>1</u> $(\sqrt[y]{a})^{x}$

7/2 Simplify surds

 $\sqrt{25}$ is NOT a surd because it is exactly 5

- $\sqrt{3}$ is a surd because the answer is not exact A surd is an irrational number
 - To simplify surds look for square number factors
- $\sqrt{75} = \sqrt{25} \times \sqrt{3} = 5\sqrt{3}$

7/3 Upper & lower bounds

• If 'a' is rounded to nearest 'x' Upper bound = $a + \frac{1}{2}x$ Lower bound = $a - \frac{1}{2}x$

e.g. if 1.8 is rounded to 1dp

Upper bound = $1.8 + \frac{1}{2}(0.1) = 1.85$ Lower bound = $1.8 - \frac{1}{2}(0.1) = 1.75$

Calculating using bounds
Adding bounds
Maximum = Upper + upper
Minimum = Lower + lower

Subtracting bounds

Maximum = Upper - lower Minimum = Lower - upper

Multiplying

Maximum = Upper x upper Minimum = Lower x lower

Dividing

Maximum = Upper ÷ lower Minimum = Lower ÷ upper

7/4 Direct and inverse proportion

The symbol ∞ means: 'varies as' or 'is proportional to'

• Direct proportion

If: $y \propto x$ or $y \propto x^2$ or $y \propto x^3$ Formulae: y = kx or $y = kx^2$ or $y = kx^3$ Example

y is directly proportional to x When y = 21, then x = 3 (find value of k first by substituting these values) $y \propto x \quad \therefore y = kx$ $21 = k \times 3$ $\therefore \frac{k = 7}{y = 7x}$ (Now this equation can be used to find y, given x)

7/8 Solve equations with fractions			
$\frac{x}{2x-3} + \frac{4}{x+1} = 1$ Common denominator (2x-3)(x+1)			
$\frac{x(x+1)+4(2x-3)}{(2x-3)(x+1)} = 1$			
$\frac{x^2 + x + 8x - 12}{(2x-3)(x+1)} = 1$			
x ² + 9x - 12 =1(2x-3)(x+1)			
$x^{2} + 9x - 12 = 2x^{2} - x - 3$ (- x^{2} from both sides)			
$9x - 12 = x^2 - x - 3$ (-9x from each side)			
-12 = x ² -10x -3 (+12 to each side)			
$0 = x^2 - 10x + 9$ (factorise)			
(x + 9)(x + 1) = 0			
x = -9 or $x = -1$			

7/9 Solve simultaneous equations ~ one is a guadratic

- Rewrite the linear with one letter in terms of the other
- Substitute the linear into the guadratic Example

x + y = 4 (find one letter in terms of the other) ⇒ y = 4 - x $x^{2} + y^{2} = 40$ (substitute y=4 -x) $x^{2} + (4-x)^{2} = 40$ (Expand $(4-x)^{2}$) $x^{2} + 16 - 8x + x^{2} = 40$ $2x^2 - 8x + 16 = 40$ (-40 from each side) $2x^2 - 8x - 24 = 0$ (÷2 both sides) $x^{2} - 4x - 12 = 0$ (factorise) (x - 6)(x + 2) = 0x = 6 or x = -2

7/9 Solve GRAPHICALLY simultaneous equations ~ one is a guadratic

Draw the two graphs and find where they intersect Example $y=2x^{2}-4x-3$ y=2x-1 14 Solutions are x = -0.3 and x = 3.3(points of intersection) Sometimes the equation has to be adapted~ rearrange the equation to solve so that the equation of the graph drawn is on the left. On the right is the other equation to be

drawn

7/10 Graph of Exponential function

The graph of the exponential function is:

The graph of this circle is

$$x^{2} + y^{2} = 5^{2}$$

 $x^{2} + y^{2} = 25$

graph above or from calculator)

7/13 Change the subject of a formula

• The subject may only appear once Use balancing to isolate the new subject Example : To make 'x' the new subject $A = \frac{k(x + 5)}{3}$ (multiply both sides by 3) $3 \Rightarrow 3A = k(x + 5)$ (Expand the bracket) $\Rightarrow 3A = kx + 5k$ (-5k from both sides) 3A - 5k = kx (÷ k both sides) $3A - 5k = \frac{kx}{k}$ $k = \frac{3A - 5k}{k}$

• The subject may appear twice Collect together all the terms containing the new subject & factorise to isolate it

Example: to make 'b' the new subject

 $a = \frac{2 - 7b}{b - 5}$ (multiply both sides by (b - 5)) a(b - 5) = 2 - 7b (Expand the bracket) ab - 5a = 2 - 7b (+7b to both sides) 7b + ab - 5a = 2 (+5a to both sides) 7b + ab = 2 + 5a (factorise the left side) To isolate b $\frac{b(7 + a)}{(7 + a)} = \frac{2 + 5a}{(7 + a)}$ (÷(7 + a) both sides) $b = \frac{2 + 5a}{(7 + a)}$

7/14 Enlarge by a negative scale factor

With a negative scale factor:

- The image is on the opposite side of the centre
- The image is also inverted

Example : Enlargement scale factor -2 about 0

7/15 Congruence

- Congruent shapes have the same size and shape, one will fit exactly over the other.
- 2 triangles are congruent if any of these 4 conditions are satisfied on each triangle

~The corresponding sides are equal ~ SSS

~2 sides & the included angle are equal ~ SAS

~2 angles & the corresponding side are equal ~ ASA

~Both triangles are right-angled, hypotenuses are equal and another pair of sides are equal ~ **RHS**

7/18 Pyramid & Sphere - Surface Area

7/21 Sampling

The sample is:

- a small group of the population. •
- an adequate size
- representative of the population

Simple random sampling

Everyone has an equal chance e.g. pick out names from a hat

Systematic sampling

Arranged in some sort of order e.g. pick out every 10th one on the list

Stratified sampling

Sample is divided into groups according to criteria These groups are called strata A simple random sample is taken from each group in proportion to its size using this formula:

No from each group = <u>Stratum size</u> x Sample size Population

Example

An inspector wants to look at the work of a stratified sample of 70 of these students.

Language	Number of students
Greek	145
Spanish	121
German	198
French	186
Total	650

No. from Greek = $145 \times 70 \approx 16$ 650

No. from Spanish = $121 \times 70 \approx 13$ 650

No. from German = $\underline{198} \times \mathbf{70} \approx 21$ 650

No. from French = 186 \times 70 \approx 20 650

This only tells us 'how many' to take - now take a random sample of this many from each language

7/22 Histograms

- Class intervals are not equal
- Vertical axis is the frequency density
- The area of each bar not the height is the frequency

Frequency = class width x frequency density Frequency density = frequency ÷ class width

To draw<u>a histogram</u>

Calculate the frequency density Fxamp<u>le</u>

E	X	ar	n	р	I	(

Age (x years)	Class width	f	Frequency density
$0 < x \le 20$	20	28	28 ÷ 20 = 1.4
$20 < x \le 35$	15	36	$36 \div 15 = 2.4$
$35 < x \le 45$	10	20	$20 \div 10 = 2$
$45 < x \le 65$	20	30	30÷20 = 1.5

Scale the frequency density axis up to 2.4 Draw in the bars to relevant heights & widths

<u>To interpret a histogram</u>

NOTE: On the vertical axis each small square = 0.8

Price (P) in pounds (£)	f = width x height
$0 < P \le 5$	5 x 8 = 40
$5 < P \le 10$	5 x 12 = 60
$10 < P \le 20$	10 × 5.6 = 56
$20 < P \le 40$	20 x 1.6 = 32