Maths Grade 7
 Knowledge Organiser

7/1 Use fractional \& negative indices

- Rules when working with indices:
$a^{x} \times a^{y}=a^{(x+y)}$
$a^{x} \div a^{y}=a^{(x-y)}$
$a^{3} \times a^{2}=a^{(3+2)}=a^{5}$
$a^{7} \div a^{3}=a^{(7-3)}=a^{4}$
$2^{3} \times 2^{2}=2^{(5)}=32$
$3^{7} \div 3^{3}=3^{(4)}=81$
$\left(a^{x}\right)^{y}=a^{(x y)}$
$a^{0}=1$
$\left(a^{3}\right)^{2}=a^{6}$
$y^{0}=1$
$\left(2^{3}\right)^{2}=2^{6}=64$
$8^{0}=1$
$a^{-x}=\frac{1}{a^{x}} \quad a^{x / y}=(\sqrt[y]{a})^{x}$
$a^{-3}=\frac{1}{a^{3}} \quad a^{2 / 5}=(\sqrt[5]{a})^{2}$
$2^{-3}=\frac{1}{2^{3}}=\frac{1}{8} \quad 32^{2 / 5}=(\sqrt[5]{32})^{2}=2^{2}$
$a^{-x / y}=$ $\frac{1}{(\sqrt[y]{a})^{x}}$

7/2 Simplify surds

$\sqrt{25}$ is NOT a surd because it is exactly 5
$\sqrt{3}$ is a surd because the answer is not exact A surd is an irrational number

- To simplify surds look for square number factors
$\sqrt{75}=\sqrt{25} \times \sqrt{3}=5 \sqrt{3}$

7/3 Upper \& lower bounds

- If ' a ' is rounded to nearest ' x '

Upper bound $=a+\frac{1}{2} x$
Lower bound $=a-\frac{1}{2} x$
e.g. if 1.8 is rounded to 1 dp

Upper bound $=1.8+\frac{1}{2}(0.1)=1.85$
Lower bound $=1.8-\frac{1}{2}(0.1)=1.75$

- Calculating using bounds

Adding bounds

Maximum = Upper + upper
Minimum = Lower + lower

Subtracting bounds
Maximum = Upper - lower
Minimum = Lower - upper

Multiplying

Maximum $=$ Upper \times upper
Minimum $=$ Lower \times lower

Dividing
Maximum $=$ Upper \div lower
Minimum $=$ Lower \div upper

7/4 Direct and inverse proportion

The symbol \propto means:
'varies as' or 'is proportional to'

- Direct proportion

If: $\quad y \propto x$ or $y \propto x^{2}$ or $y \propto x^{3}$ Formulae: $y=k x$ or $y=k x^{2}$ or $y=k x^{3}$ Example
y is directly proportional to x
When $y=21$, then $x=3$
(find value of k first by substituting these values)
$y \propto x \quad \therefore y=k x$
21 $=k \times 3$
$\therefore \mathrm{k}=7$
$y=7 x$
(Now this equation can be used to find y, given x)

- Inverse proportion

If:

$$
y \propto \frac{1}{x} \text { or } y \propto \frac{1}{x^{2}} \text { or } y \propto \frac{1}{x^{3}}
$$

Formulae: $y=\frac{k}{x}$ or $y=\frac{k}{x^{2}}$ or $y=\frac{k}{x^{3}}$

Example

a is inversely proportional to b
When $a=12$ and $b=4$

$$
\begin{aligned}
a \propto \underline{1} \quad \therefore a & =\frac{k}{b} \\
12 & =k \\
\therefore k & =48 \\
\therefore a & =48
\end{aligned}
$$

7/5 Solve quadratic equation by factorising

- Put equation in form $a x^{2}+b x+c=0$
$2 x^{2}-3 x-5=0$
- Factorise the left hand side
$(2 x-5)(x+1)=0$
- Equate each factor to zero
$2 x-5=0$ or $x+1=0$
$x=2.5$ or $x=-1$

7/6 Solve quadratic equations by formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Example

To solve: $x^{2}+4 x-2=0$

$$
a=1
$$

$$
b=4
$$

$$
x=-b \pm \sqrt{b^{2}-4 a c}
$$

$$
x=\frac{-b \pm \sqrt{b^{2}}-4 a c}{2 a}
$$

$$
x=\frac{-4 \pm \sqrt{(-4)^{2}-4(1)(-2)}}{2(3)}
$$

$$
=\frac{-4 \pm \sqrt{24}}{6}
$$

$$
6
$$

$$
=\frac{-4 \pm \sqrt{24}}{6}
$$

$x=\frac{-4+\sqrt{24}}{6}$ OR $\frac{-4-\sqrt{24}}{6}$

7/7 Simplify algebraic fractions

Adding \& subtracting algebraic fractions Example 1
$\frac{x+3}{4}+\frac{x-5}{3} \quad$ (common denominator is 12)
$=\frac{3(x+3)}{12}+4\left(\frac{x-5)}{12}\right.$
$=\frac{3 x+9+4 x-20}{12}$
$=\underline{7 x-11}$
12

Example 2

$$
\left(\begin{array}{l}
\frac{5}{(x+1)}-\frac{3}{(x+2)} \text { (common denominator is }(x+1)(x+2) \\
=\frac{5(x+2)-3(x+1)}{(x+1)(x+2)} \\
=\frac{5 x+10-3 x-3}{(x+1)(x+2)} \\
=\frac{2 x+7}{(x+1)(x+2)}
\end{array}\right.
$$

7/8 Solve equations with fractions

$$
\begin{aligned}
& \frac{x}{2 x-3}+\frac{4}{x+1}=1 \text { Common denominator }(2 x-3)(x+1) \\
& \frac{x(x+1)+4(2 x-3)}{(2 x-3)(x+1)}=1 \\
& \frac{x^{2}+x+8 x-12}{(2 x-3)(x+1)}=1 \\
& x^{2}+9 x-12=1(2 x-3)(x+1) \\
& x^{2}+9 x-12=2 x^{2}-x-3 \quad\left(-x^{2}\right. \text { from both sides) } \\
& 9 x-12=x^{2}-x-3 \quad(-9 x \text { from each side) } \\
& -12=x^{2}-10 x-3 \quad(+12 \text { to each side) } \\
& 0=x^{2}-10 x+9 \text { (factorise) } \\
& (x+9)(x+1)=0 \\
& x=-9 \text { or } x=-1
\end{aligned}
$$

7/9 Solve simultaneous equations ~ one is a quadratic

- Rewrite the linear with one letter in terms of the other
- Substitute the linear into the quadratic Example
$x+y=4$ (find one letter in terms of the other
$\Rightarrow y=4-x$
$x^{2}+y^{2}=40$ (substitute $y=4-x$)
$x^{2}+(4-x)^{2}=40$ (Expand $\left.(4-x)^{2}\right)$
$x^{2}+16-8 x+x^{2}=40$
$2 x^{2}-8 x+16=40$ (-40 from each side)
$2 x^{2}-8 x-24=0(\div 2$ both sides $)$
$x^{2}-4 x-12=0$ (factorise)
$(x-6)(x+2)=0$
$x=6$ or $x=-2$

7/9 Solve GRAPHICALLY simultaneous equations ~ one is a quadratic

- Draw the two graphs and find where they intersect
Example
$y=2 x^{2}-4 x-3$
$y=2 x-1$

Solutions are $x=-0.3$ and $x=3.3$ (points of intersection)

- Sometimes the equation has to be adapted~ rearrange the equation to solve so that the equation of the graph drawn is on the left.
On the right is the other equation to be drawn

7/10 Graph of Exponential function

The graph of the exponential function is:

$$
y=a^{x}
$$

Example $y=2^{x}$

It has no maximum or minimum point
It crosses the y-axis at $(0,1)$
It never crosses the x-axis

7/11 Graph of the circle

The graph of a circle is of the form:

$$
x^{2}+y^{2}=r^{2}
$$

where r is the radius and the centre is $(0,0)$

This a circle of radius 5 and a centre $(0,0)$
The graph of this circle is

$$
\Rightarrow \begin{aligned}
x^{2}+y^{2} & =5^{2} \\
x^{2}+y^{2} & =25
\end{aligned}
$$

7/12 Graphs of trigonometric functions

LEARN THE SHAPES OF THE GRAPHS

Graph of $y=\sin x$

$-1 \leq \sin x \leq 1$

Graph $y=\cos x$

$-1 \leq \cos x \leq 1$

Graph $y=\tan x$

Tan x is undefined at $90^{\circ}, 270^{\circ} \ldots$
Solutions to trigonometrical equations can be found on the calculator and by using the symmetry of these graphs

Example:

If $\sin x=0.5$
$x=30^{\circ}, 150^{\circ}, \quad$ (See the solutions on \sin graph above or from calculator)

7/13 Change the subject of a formula

- The subject may only appear once Use balancing to isolate the new subject

Example: To make ' x ' the new subject

$$
\begin{aligned}
A & \left.=\frac{k(x+5)}{3} \quad \text { (multiply both sides by } 3\right) \\
\Rightarrow 3 A & =k(x+5) \quad \text { (Expand the bracket }) \\
\Rightarrow 3 A & =k x+5 k \quad(-5 k \text { from both sides }) \\
3 A-5 k & =k x \quad(\div k \text { both sides }) \\
\frac{3 A-5 k}{k} & =\frac{k x}{\not K} \\
x & =\frac{3 A-5 k}{k}
\end{aligned}
$$

- The subject may appear twice Collect together all the terms containing the new subject \& factorise to isolate it

Example: to make ' b ' the new subject
$a=2-7 b$ (multiply both sides by $(b-5)$ b-5
$a(b-5)=2-7 b \quad$ (Expand the bracket)
$a b-5 a=2-7 b \quad(+7 b$ to both sides)
$7 b+a b-5 a=2 \quad$ (+5a to both sides) To leave terms in b together
$7 b+a b=2+5 a \quad$ (factorise the left side) To isolate b
$\underline{b(7+a)}=\underline{2+5 a} \quad(\div(7+a)$ both sides $)$ $(7+a) \quad(7+a)$
$b=\underline{2+5 a}$ $(7+a)$

7/14 Enlarge by a negative scale factor

With a negative scale factor:

- The image is on the opposite side of the centre
- The image is also inverted

Example : Enlargement scale factor -2 about 0

7/15 Congruence

- Congruent shapes have the same size and shape, one will fit exactly over the other.
- 2 triangles are congruent if any of these 4 conditions are satisfied on each triangle
~The corresponding sides are equal ~ SSS

~2 sides \& the included angle are equal ~ SAS

~2 angles \& the corresponding side are equal ~ ASA

\sim Both triangles are right-angled, hypotenuses are equal and another pair of sides are equal ~RHS

7/16 Similarity \& enlargement

- For similar shapes when:

Length scale factor $=\mathbf{k}$
Area scale factor $=k^{2}$
Volume scale factor $=k^{3}$
Example

If height of $A=4 \mathrm{~cm}$ \& height of $B=6 \mathrm{~cm}$

- Length scale factor $=6 \div 4=1.5$

If surface area of $A=132 \mathrm{~cm}^{2}$

- Surface area of $B=132 \times 1.5^{2}=297 \mathrm{~cm}^{3}$ If volume of $A=120 \mathrm{~cm}^{3}$
- Volume of $B=120 \times 1.5^{3}=405 \mathrm{~cm}^{3}$
- Identify the triangle in the 3D shape containing the unknown side/angle
- Use Pythagoras and trigonometry as appropriate

7/18 Pyramid \& Sphere -Volume

VOLUME - PYRAMID

Volume of Pyramid $=\frac{1}{3} x$ area of cross-section x height

e.g. cone

Volume $=\frac{1}{3} \times \pi r^{2} h$
Volume $=\frac{1}{3} \times \mid \times w \times h$

VOLUME - SPHERE

Volume of Sphere $=\frac{4}{3} \pi r^{3}$

7/18 Pyramid \& Sphere - Surface Area

CURVED SURFACE AREA

\sim Curved surface area of a cylinder $=2 \pi r h$

\sim Curved surface of a cone $=\pi r l$

[NB To find 'l' use Pythagoras' Theorem $\left.r^{2}=h^{2}+r^{2}\right]$
\sim Curved surface of a sphere $=4 \pi r^{2}$

7/19 Length of arc \& area of sector

Length of arc $=\frac{\theta}{360^{\circ}} \times 2 \pi r$

Area of sector $=\underline{\theta} \times \pi r^{2}$ 360°

7/23 Probability - the 'and' 'or' rule

$$
P(A \text { or } B)=p(A)+p(B)
$$

Use this addition rule to find the probability of either of two mutually exclusive events occurring
e.g. $p(a 3$ on a dice or a 4 on a dice)

$$
=\frac{1}{6}+\frac{1}{6}=\frac{2}{6}
$$

$$
P(A \text { and } B)=p(A) \times p(B)
$$

Use this multiplication rule to find the probability of either of both of two independent events occurring
e.g. p (Head on a coin and a 6 on a dice)

$$
=\frac{1}{2} \times \frac{1}{6}=\frac{1}{12}
$$

7/20 Circle properties

The angle at the centre $=2 x$ the angle at the circumference

Angles in the same segment are equal

The perpendicular from the centre to a chord bisects the chord

The angle between a tangent and a chord is equal to the angle in the alternate segment

7/21 Sampling

The sample is:

- a small group of the population.
- an adequate size
- representative of the population

Simple random sampling

Everyone has an equal chance
e.g. pick out names from a hat

Systematic sampling

Arranged in some sort of order
e.g. pick out every $10^{\text {th }}$ one on the list

Stratified sampling

Sample is divided into groups according to criteria These groups are called strata
A simple random sample is taken from each group in proportion to its size using this formula:

No from each group $=$ Stratum size \times Sample size Population

Example

An inspector wants to look at the work of a
stratified sample of 70 of these students.

Language	Number of students
Greek	145
Spanish	121
German	198
French	186
Total	650

No. from Greek $=\frac{145}{650} \times 70 \approx 16$

No. from Spanish $=\frac{121}{650} \times 70 \approx 13$

No. from German $=\frac{198}{650} \times 70 \approx 21$

No. from French $=\frac{186}{650} \times 70 \approx 20$
This only tells us 'how many' to take - now take a random sample of this many from each language

7/22 Histograms

- Class intervals are not equal
- Vertical axis is the frequency density
- The area of each bar not the height is the frequency
Frequency $=$ class width \times frequency density
Frequency density $=$ frequency \div class width

To draw a histogram

Calculate the frequency density
Example

Age (x years)	Class width	f	Frequency density
$0<x \leq 20$	$\mathbf{2 0}$	$\mathbf{2 8}$	$\mathbf{2 8} \div \mathbf{2 0}=1.4$
$20<x \leq 35$	$\mathbf{1 5}$	$\mathbf{3 6}$	$\mathbf{3 6} \div \mathbf{1 5}=2.4$
$35<x \leq 45$	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{2 0} \div \mathbf{1 0}=2$
$45<x \leq 65$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{3 0} \div \mathbf{2 0}=1.5$

Scale the frequency density axis up to 2.4
Draw in the bars to relevant heights \& widths

To interpret a histogram

NOTE: On the vertical axis each small square $=0.8$

Price (\boldsymbol{P}) in pounds (£)	$\mathbf{f}=$ width \mathbf{x} height
$0<P \leq 5$	$5 \times 8=40$
$5<P \leq 10$	$5 \times 12=60$
$10<P \leq 20$	$10 \times 5.6=56$
$20<P \leq 40$	$20 \times 1.6=32$

