Maths Grade 6
 Knowledge Organiser

6.1 Change recurring decimal to fraction

If $x=0.4444444$
$10 x=4.4444444$
$9 x=4$
$x=\underline{4}$
9

$$
\begin{aligned}
\text { If } x & =0.54545 \\
100 x & =54.545454 \\
99 x & =54 \\
x & =\frac{54}{99}
\end{aligned}
$$

6.5 Expand 2 brackets

$$
\begin{aligned}
& \text { - Use FOIL } \\
& \text { F O I L } \\
& x^{2}-2 x+3 x-6 \\
& =x^{2}+x-6
\end{aligned}
$$

6.6 Change the subject of a formula

- Isolate the new subject
- Use balancing

Make c new subject	Make \times new subject
$f=3 c-4$	$a x+b x=a y$
$3 c-4=f(+4)$	$x(a+b)=a y$
$3 c=f+4(\div 3)$	x

6.7 Evaluate algebraic formulae

Rewrite the formula with numbers replacing letters

- WITH A CALCULATOR

Use fraction key $\frac{\square}{\square}$ or $\square \frac{\square}{\square}$
Use (-) key for negative numbers

- WITHOUT A CALCULATOR

Remember the rules for negative numbers

$$
\begin{aligned}
& -+=- \\
& --=+
\end{aligned} \quad \begin{aligned}
& -x+=- \\
& -x-=+
\end{aligned}
$$

6.8 Represent inequalities graphically

First plot the straight line.
Decide which side of the line to shade.
Leave the region required unshaded.
e.g. $x \leq 3 \quad y>-2 \quad y<x$

6.9 Identify graphs

- Learn the basic shapes of graphs

Linear graphs - straight line - equation in x Quadratic graph - parabola - equation in x^{2} Cubic graph - S—shape - equation in x^{3} Reciprocal graph - equation e.g $y=\underline{3}$

6.10 Effect of adding/multiplying by a constant on a graph

Original graph $y=x^{2}$	
New equation	Change in graph
$y=x^{2}+2$	Move up 2
$y=x^{2}-2$	Move down 2
$y=2 x^{2}$	Stretch from x-axis in $y-$ direction - scale factor 2
$y=\frac{1}{2} x^{2}$	Stretch from x-axis in $y-$ direction - scale factor $\frac{1}{2}$

6.11 Solve simultaneous equations by an algebraic method

- Make the number of ys the same
- Add or subtract to eliminate the ys Same signs ~ subtract
Different signs ~ add
- Find the value of x
- Substitute the value of x to find y
e.g.

$$
\begin{array}{ll}
2 x-3 y=11 & (x 2) \\
5 x+2 y=18 & (x 3)
\end{array}
$$

$$
4 x-6 y=22
$$

$$
15 x+6 y=54
$$

Add the two equations to eliminate y

$$
\begin{aligned}
& 19 x=76 \\
& x=4 \\
& \hline
\end{aligned}
$$

Substitute $x=4$ into one of the equations

$$
\begin{aligned}
5 x+2 y & =18 \\
5 x 4+2 y & =18 \\
20+2 y & =18 \\
2 y & =-2 \\
y & =-1
\end{aligned}
$$

6.11 Solve simultaneous equations graphically

- Draw the graphs of the equations
- Find where they cross

Solution is $x=2, y=3$

| 6.12 Trigonometry |
| :--- | :--- | :--- | :--- | :--- |

6.13 Difference between formulae for

 length, area and volume- Numbers and π have no dimensions
- Length \times length $=$ area
- Length \times length \times length $=$ volume
6.14 Median, quartiles \& interquartile range from cumulative frequency graph

Median = 38 marks
Upper quartile $=43$ marks
Lower quartile $=30$ marks
Interquartile range $=43-30=13$ marks

6.14 Box plot

6.15 Compare distributions. 0000

- Mean, median \& mode compare size
- Range \& interquartile range compare spread
- Distributions can be compared visually using a box plot

6.16 Add or multiply two probabilities

$P(A$ or $B)=p(A)+p(B)$
$P(A$ and $B)=p(A) \times p(B)$

If you get an answer to a probability question that is more than one, you have most certainly added instead of multiplied

6.17 Tree Diagrams

- When going along the branches.

MULTIPLY the probabilities

- If more than one route is wanted, ADD the probabilities

Example:

The probability that Jane is late $=0.2$

Day 1 Day 2

$$
\text { late }-0.2 \times 0.2=0.04
$$

To find the probability of late on only one day:

day1 late day2 not late
$=$OR $=0.16$ $=0.32$$+$day1 not late

