Maths Grade 4 Knowledge Organiser

4.1 Understand \& use a multiplier

- To increase a quantity by 5% Multiply the quantity by $1.05(100+5=105)$
- To decrease a quantity by 5%

Multiply the quantity by $0.95(100-5)=95$

4.2 Divide an amount into a given ratio

e.g. Divide $£ 40$ in the ratio of $1: 3: 4$

Total number of shares $=1+3+4=8$
1 share $=£ 40 \div 8=£ 5$
3 shares $=3 \times £ 5=£ 15$
5 shares $=5 \times £ 5=£ 25$
e.g. A and B share some sweets in ratio 3:2 A gets 12 sweets
So 3 shares $=12$
1 share $=12 \div 3=4$
B gets $2 \times 4=8$ sweets

4.34 rules of fractions with mixed numbers

Change mixed numbers to improper fractions first:
e.g. $2 \frac{3}{4}=\frac{11}{4}$

Then follow the same rules:

- Add \& subtract

Denominators must be the same

- Multiply

Multiply numerators; multiply denominators

- Divide

Invert fraction after \div
Multiply numerators; multiply denominators

4.4 Round to one significant figure

These all have ONE significant figure

Abstract

300

0.7

80
0.05
ㄴ
0.05
0.003

4.4 Estimate answers to calculations

- Round each number to 1 sf firs \dagger
e.g. $\frac{423 \times 28}{568}=\frac{400 \times 30}{600}=\frac{12000}{600}=20$
e.g. $\frac{3.26 \times 11.8}{0.58}=\frac{3 \times 10}{0.6}=\frac{30}{0.6}=\frac{300}{6}=50$
e.g. $\underline{8.3 \times 35.6}=\underline{8 \times 40}=\underline{320}=640$
$0.49 \quad 0.5 \quad 0.5$
$(\div 0.5=$ doubling the number being divided)

4.5 Find LCM of 2 numbers

Write down multiples of each number Pick out the lowest common multiple e.g. To find LCM of 12 and 15

- Multiples of 12: 12,24,36,48,60...
- Multiples of 15: 15,30,45,60

LCM of 12 and $15=60$

4.5 Find HCF of 2 numbers

Write down factors of each number
Pick out the highest common factor e.g. To find the HCF of 12 and 15

- Factors of 12: 1,12,2,6,3,4
- Factors of $15: 1,15,3,5$

HCF of 12 and $15=3$
4.5 Express a number as the product of its prime factors
e.g.

$40=2 \times 2 \times 2 \times 5=2^{3} \times 5$

4.6 Expand brackets and simplify

Multiply everything inside the bracket by what is outside Then collect like terms together
3(x+2) $+2(x-5)$
$=3 x+6+2 x-10$
$=5 x-4$

Watch for the negative sign in front of the bracket It changes the sign inside the bracket
$3(x+2)-2(x-5)$
$=3 x+6-2 x+10$
$=\underline{x}+16$

4.7 Apply the laws of indices

When multiplying ADD the indices
When dividing SUBTRACT the indices
Treat numbers as normal
e.g. $3 a^{2} \times 2 a^{3}=(3 \times 2) a^{2+3}=6 a^{5}$
$10 a^{6} \div 5 a^{2}=(10 \div 5) a^{6-2}=2 a^{4}$

4.8 Solve inequalities in one variable

$a<b$ means a is less than b
$a \leq b$ means a is less than or equal to b
$a>b$ means a is greater than b
$a \geq b$ means a is greater than or equal to b
Inequalities can be treated like equations
The solution can be shown on a number line
e.g. $12 x-4<2$ (+4 to each side)
$2 x<6$ ($=2$ each side)
$x<3$
$\times \quad 1$

4.8 Use trial \& improvement method to solve an equation

To solve $2 x^{2}-3 x=16$ (correct to 1 dp)

Try $x=3$	$2 \times 3^{2}-3 \times 3=9$	
Try $x=4$	$2 \times 4^{2}-3 \times 4=20$	
Try $x=3.5$	$2 \times 3.5^{2}-3 \times 3.5=14$	Too small
Try $x=3.6$	$2 \times 3.6^{2}-3 \times 3.6=15.12$	Too small
Try $x=3.7$	$2 \times 3.7^{2}-3 \times 3.7=16.28$	Too big

$x=3.7$ (the solution that gives the closest to 16)

4.9 Rearrange a formula

- Use the same balancing steps as when you solve equations
e.g. Make ' t ' the new subject in:

$$
\begin{aligned}
\mathrm{v} & =\mathrm{u}+\mathrm{at} \text { (-u from each side) } \\
\mathrm{v-u} & =a t \text { (} \text {) each side) } \\
\frac{\mathrm{v-u}}{\mathrm{a}} & =\frac{-a t}{-a} \\
t & =\underline{v-u}
\end{aligned}
$$

$$
a
$$

4.10 Sequences

- Understand position and term

| Position | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Term | 3 | 7 | 11 | 15 |

Term to term rule $=+4$
Position to term rule is $\times 4-1$
(because position $1 \times 4-1=3$)
nth term $=n \times 4-1=4 n-1$

- Generate terms of a sequence

If the nth term is $5 n+1$
$1^{\text {st }}$ term ($n=1$) $=5 \times 1+1=6$
$2^{\text {nd }} \operatorname{term}(n=2)=5 \times 2+1=11$
$3^{\text {rd }} \operatorname{term}(n=3)=5 \times 3+1=16$

4.11 Straight line graphs or linear graphs

These are graphs that can be written in the form: $y=m x+c$

- m means gradient of the line
- c is where the graph cuts the y-axis
e.g. $y=3 x-1$

Has a gradient of 3 and cuts the y-axis at -1

- To find the gradient of a line
> The gradient of a line is its 'slope'
$>$ It is measured by vertical \div horizontal

Gradient $=6 \div 4=1.5$

4.11 Graphs of quadratic equations

The shape of a quadratic graph is a parabola

You will need to complete a table of values to work out the points to plot
e.g. $y=x^{2}-2 x-3$

x	-2	-1	0	1	2	3
y	5	0	-3	-4	-3	0

- To solve $x^{2}-2 x-3=0$

Note down the values of x where the graph cuts the x-axis

- To solve $x^{2}-2 x-3=4$

Note down the values of x where the graph cuts the line $y=4$

4.12 Pythagoras Theorem

For this right angled triangle:

- If finding the hypotenuse ADD the squares of the other 2 sides Then square root
- If finding a shorter side

SUBT the squares of the other 2 sides Then square root

4.13 Find lengths, areas \& volumes

Formulae to learn:

Area of rectangle $=1 \times w$

Area of triangle $=\frac{b \times h}{2}$

Area of parallelogram $=b \times h$

Area of trapezium $=\frac{1}{2}(a+b) \times h$

b
Area of circle $=\pi \times r^{2}$

Circumference $=\pi \times \mathrm{d}$

Volume of any prism=Area of cross-section \times length cross section

Curved Surface Area of cylinder $=2 \pi r h$

4.14 Transformations

There are 4 main transformations and must be described accurately

Transformation	Described by:
REFLECTION	Line of reflection
TRANSLATION	Vector
ROTATION	Angle, direction, centre
ENLARGEMENT	Scale factor, centre

4.15 Locus of point

LOCUS is the path or region a point covers as it moves according to a rule

- Fixed distance from a point - circle

- Equal distance from two points perpendicular bisector
- Draw a straight line through where the arcs cross above and below.
.
:
-
-
-
-
-
- Equal distance from two intersecting lines angle bisector

- Perpendicular from a point to a line

Draw arcs from the point P on the line

4.16 Bounds of measurement

- If 23 cm is rounded to nearest whole cm
- 23 is between the whole numbers 22 and 24

4.17 Compound Measures

- These triangles are useful
- Cover the quantity you are trying to find
- What is uncovered is the formula to use

D~Distance
S~Speed
T~Time

Examples

Speed = Distance Time

M~Mass
D~Density
V~Volume

$$
\text { Distance }=\text { Speed } \times \text { Time }
$$

Distance/Time Graph

- $A B$ shows the journey away
- $B C$ shows no movement
- CD shows journey back
- The steeper the line the higher the speed

4.18 Design \& criticise a questionnaire

- Questions should be simple
- The answers need to be 'yes or 'no' or a 'number' or from a choice of answers
- Tick boxes are useful
- Avoid responses open to interpretation
- No overlapping values in response boxes
- Avoid leading questions
- Avoid open-ended questions
- Avoid biased questions
- Ensure the sample is large enough

4.19 Frequency Polygon

- plot mid-points of bars \& join

Histogram

- Frequency polygons and stem \& leaf diagrams are often used to compare 2 distributions on the same diagram

4.20 Estimate mean

Time $(t \mathbf{s e c})$	x	f	$f x$
$60<t \leq 70$	65	12	780
$70<t \leq 80$	75	22	1650
$80<t \leq 90$	85	23	1955
$90<t \leq 100$	95	24	2280
$100<t \leq 110$	105	19	1995

$$
\Sigma f=100 \quad \Sigma f x=8660
$$

Est. Mean $=\frac{\sum f x}{\Sigma f}=\frac{8660}{100}=\underline{86.6 \mathrm{sec}}$

Modal class $=90<t \leq 100$
(because this class interval has the largest frequency i.e. 24)
Median $=\frac{1}{2}(100+1)^{\text {th }}=50.5^{\text {th }}$

$$
=80<t \leq 90
$$

4.21 Compare distributions

- Compare an average using mean, median or mode.
- Compare spread using the range (the higher the range, the bigger the spread of data)
- Frequency polygons would be used to compare two sets of data

4.22 Understand relative frequency

This is the name given to an estimate of probability from an experiment or a survey Relative probability = No. times an outcome occurs

Total number of trials
Expected frequency=probability \times number of trials
e.g. Probability of spinning a ' 3 ' is 0.12

The number of ' 3 's expected in 100 spins = $0.12 \times 100=12$

4.23 Scatter graphs

A scatter diagram would be used to find out if there is any correlation or relationship between two sets of data e.g. Positive Correlation

If it shows correlation, draw a line of best fit on it Points which do not fit the trend are called OUTLIERS and should be ignored
The line can be used to predict data

