## Maths Grade 3

 Knowledge Organiser
### 3.1 Equivalent fractions, decimals \& percentages

- Percentage to decimal to fraction $27 \%=0.27=\frac{27}{100}$
$7 \%=0.07=\frac{7}{100}$
$70 \%=0.7=\frac{70}{100}=\frac{7}{10}$
- Decimal to percentage to fraction $0.3=30 \%=\frac{3}{10}$
$0.03=3 \%=\frac{3}{100}$
$0.39=39 \%=\frac{39}{100}$
- Fraction to decimal to percentage $\frac{4}{5}=\frac{80}{100}=80 \%=0.8$


Change to 100
$\frac{3}{8}=3 \div 8=0.375=37.5 \%$

### 3.2 Increase/Decrease by a percentage

- To increase $£ 12$ by $5 \%$
$10 \%$ of $£ 12=£ 1.20$
$5 \%$ of $£ 12=£ 0.60$ (OR $0.05 \times 12=0.6$ )
Increased amount $=£ 12+£ 0.60=£ 12.60$
- To decrease $£ 50$ by $15 \%$
$10 \%$ of $£ 50=£ 5$
$5 \%$ of $£ 50=£ 2.50$
$15 \%$ of $£ 50=£ 7.50$ (OR $0.15 \times 50=7.5$ )
Decreased amount $=£ 50-£ 7.50=£ 42.50$


### 3.3 Write \& use ratio

- Ratio can be simplified by cancelling e.g. 12 : 15
$\Rightarrow 4: 5$
e.g. $30 \mathrm{~cm}: 1 \mathrm{~m}$
$\Rightarrow 30: 100$
=> $3: 1$
- Ratio can be written in form $1: n$
e.g. $2: 5$ ( $\div$ both parts by 2)
=> 1 : 2.5
- Ratio can be used to solve problems e.g. A model ship is made using scale $1: 600$ The model ship length is 40 cm
Real length $=600 \times 40 \mathrm{~cm}=12400 \mathrm{~cm}$

$$
=124 \mathrm{~m}
$$

### 3.3 Use proportional reasoning

- Change an amount in proportion e.g. If 6 books cost $£ 22.50$

Find the cost of 11. (find cost of 1 first)

- Change amounts to compare
e.g. A pack of 5 pens cost $£ 6.10$

A pack of 8 pens cost $£ 9.20$
Which is the best buy? (find cost of 40 of each or 1 of each)

### 3.4 Use a calculation to work out another

$2.4 \times 36=86.4$
$2.4 \times 3.6=8.64$
(Notice how the sum changes \& so does the answer)

$86.4 \div 24=3.6 \quad 8640 \div 36=240$
(Notice how the sum changes \& so does the answer)


### 3.5 Calculate with fractions

- Add \& subtract fractions
$\sim$ Make the denominators the same

| e.g. | $\frac{1}{5}+\frac{7}{10}$ |
| :--- | :---: |
| $=$ | $\frac{2}{10}+\frac{7}{10}-\frac{2}{3}$ |
| $=$ | $\frac{9}{10}$ |$=\frac{12}{15}-\frac{10}{15}$

## - Multiply fractions

$\sim$ Write 7 as $\frac{7}{1}$
~Multiply numerators \& denominators
e.g. $5 \times \frac{2}{3}$
$\frac{4}{5} \times \frac{2}{3}$
$=\frac{5}{1} \times \frac{2}{3}$

$$
=\frac{8}{15}
$$

$=\frac{10}{3}=3 \frac{1}{3}$

## - Divide fractions

$\sim$ Write 7 as $\frac{7}{1}$
$\sim$ Flip numerator \& denominator after $\div$
~Multiply numerators \& denominators

| e.g. $5 \div \frac{2}{3}$ | $\frac{4}{5} \div \frac{2}{3}$ |
| :--- | :--- |

$$
\begin{aligned}
& =\frac{5}{1} \times \frac{3}{2} \\
& =\frac{15}{2}=7 \frac{1}{2}
\end{aligned}
$$

$$
=\frac{4}{5} \times \frac{3}{2}
$$

$$
=\frac{12}{10}=1 \frac{2}{10}=1 \frac{1}{5}
$$

- Calculate fraction of quantity To find $\frac{4}{5}$ of a quantity $\rightarrow \div 5 \times 4$ e.g. $\frac{4}{5}$ of $£ 20=20 \div 5 \times 4=£ 16$


### 3.6 Expand a single bracket

Multiply everything inside the bracket by what is outside
Then collect like terms together

$x(x-5)=x^{2}-5 x$

### 3.6 Factorise an expression

This is the opposite of expand - put bracket back in
$4 y-12=4(x-3)$
$y^{2}+7 y=y(y+7)$

### 3.7 Solve linear equations

~Multiply out brackets first
~If there are letters on both sides get rid of the smaller first
~Do the same to both sides
e.g.

To solve $5(x-3)=3 x+7$ (expand bracket)
$5 x-15=3 x+7$ ( $-3 x$ from both sides)
$2 x-15=\quad+7$ ( +15 to each side)
$2 x=22$ ( -2 both sides)
22
$x=11$

### 3.8 Sequences

- Understand term and term


Term to term rule $=+4$
So the sequence can be carried on

- Generate terms of a sequence

If the $n$th term is $5 n+1$
$1^{\text {st }}$ term $(n=1)=5 \times 1+1=6$
$2^{\text {nd }}$ term ( $n=2$ ) $=5 \times 2+1=11$
$3^{\text {rd }}$ term ( $n=3$ ) $=5 \times 3+1=16$

### 3.9 Plot graphs of linear equations

~Substitute values of $x$ into the equation $\sim$ Plot the points in pencil
$\sim$ Join the points with a ruler and pencil
$\sim$ They should be in a straight line
e.g. $y=3 x-1$

| $x$ | -2 | -1 | 0 | 1 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $y$ | -7 | -4 | -1 | 2 | 5 |

### 3.10 Describe midpoint of a line segment



Find exactly half way and write down the coordinates

Midpoint of $A B=(2,1.5)$

### 3.11 Use a formula

- Write down the formula
- Substitute the numbers given
- Work out the unknown quantity
e.g. $v=u+a t$ when $v=19, a=7$ and $t=2$
$19=u+7 \times 2$
$19=u+14$
$\underline{u}=5$


### 3.12 Know \& use bearings

- A bearing is a direction measured as an angle clockwise from the North
- It needs 3 digits so may need a 0 in front e.g. $072^{\circ}$
- Bearings are given from a fixed point so look for the fixed point after the word 'FROM'
e.g. $A$ bearing of $072^{\circ}$ from $A$ to $B$


A
3.13 Angles associated with parallel lines

| F-shape |
| :--- | :--- |
| Corresponding |
| angles |
| are equal |$\quad$| Z-shape <br> Alternate <br> angles <br> are equal |
| :--- | | C or U shape |
| :--- |
| Co-Interior or |
| allied angles |
| add up to $180^{\circ}$ |

- Vertically opposite angles are equal



### 3.14 Angles and polygons

~Polygons have straight sides
$\sim$ Polygons are named by the number sides

$$
\begin{aligned}
& 3 \text { sides - triangle } \\
& 4 \text { sides - quadrilateral } \\
& 5 \text { sides - pentagon } \\
& 6 \text { sides - hexagon } \\
& 7 \text { sides - heptagon } \\
& 8 \text { sides - octagon } \\
& 9 \text { sides - nonagon } \\
& 10 \text { sides - decagon }
\end{aligned}
$$

$\sim$ With ALL sides equal they are called REGULAR
$\sim$ Sum of exterior angles is always $360^{\circ}$

$\sim$ the interior \& exterior angle add up to $180^{\circ}$
$\sim$ the interior angles add up to:
Triangle $=1 \times 180^{\circ}=180^{\circ}$
Quadrialteral $=2 \times 180^{\circ}=360^{\circ}$
Pentagon $=3 \times 180^{\circ}=540^{\circ}$
Hexagon = $4 \times 180^{\circ}=720^{\circ}$ etc


- Construct triangle given angles
(Use a protractor)



### 3.16 2D representations of 3D shapes

- 3D drawing on isometric paper (notice NO horizontal lines)

- 3 views of a 3D shape

Plan view $\downarrow$

front elevation

Front elevation


- Nets


Cube


Cuboid


Square based pyramid

### 3.17 Enlarge a shape

You need to know:

- Centre
e.g. $(5,4)$
- Scale factor e.g. 2



### 3.18 Translate, rotate \& reflect a shape

## USE TRACING PAPER TO HELP

- Translate a shape

You need to know:

- How to move it e.g. 3 Right 4 Down


Notice:

- The new shape stays the same way up
- The new shape is the same size
- Rotate a shape

You need to know:

- Angle e.g. $90^{\circ}$
- Direction e.g. clockwise
- Centre of rotation e.g. $(0,0)$

- Reflect a shape in a line

The line could be vertical, horizontal or diagonal On a grid:
The vertical line would be called $x=$ ?
The horizontal line would be called $y=$ ?
The diagonal line would be called $y=x$ or $y=-x$



### 3.19 Know \& use formulae for areas

- Area of triangle

Area of triangle $=\frac{b \times h}{2}$
$=\frac{8 \times 5}{2}$
$20 \mathrm{~cm}^{2}$


- Area of parallelogram Area of parallelogram $=b \times h$

$$
\begin{aligned}
& =8 \times 5 \\
& =40 \mathrm{~cm}^{2}
\end{aligned}
$$



- Area of trapezium

Area of trapezium $=(a+b) \times h$

$$
\begin{aligned}
& =\frac{(8+12)}{2} \times 6 \\
& =60 \mathrm{~cm}^{2}
\end{aligned}
$$

### 3.20 Know \& use formulae for volume \& surface area of simple solids

- Volume of cuboid

Volume $=1 \times w \times h$

$$
\begin{aligned}
& =5 \times 3 \times 2 \\
& =30 \mathrm{~cm}^{3}
\end{aligned}
$$



- Surface area of cuboid

Front $=5 \times 3=15$
Back $=5 \times 3=15$
Top $=5 \times 2=10$
Bottom $=5 \times 2=10\}$ Total Surface Area $=62 \mathrm{~cm}^{2}$
Side $=3 \times 2=6$
Side $=3 \times 2=6$

Volume $($ any prism $)=$ Area of cross-section $\times$ length

### 3.21 Formulae for circle

- Area of circle

Area of circle $=\pi \times r^{2}$

$$
\begin{aligned}
& =\pi \times r^{2} \\
& =\pi \times 5^{2} \\
& =\underline{78.5 \mathrm{~cm}^{2}}
\end{aligned}
$$



- Circumference of circle

Area of circle $=\pi \times \mathrm{d}$

$$
\begin{aligned}
& =\pi \times 8 \\
& =25.1 \mathrm{~cm}
\end{aligned}
$$



### 3.22 Presentation of data

- Construct a frequency polygon
(points plotted at the midpoint of grouped data)

- Two-way tables

To sort data by category
e.g. how students travel to school

|  | Bus | Walk | Cycle | Total |
| :--- | :--- | :--- | :--- | :--- |
| Boys |  |  |  |  |
| Girls |  |  |  |  |
| Total |  |  |  |  |

### 3.23 Construct a scatter graph

Read scale carefully when plotting the points


### 3.23 Stem \& leaf diagram

- Data must be in order
- Add a key


Key: $1 \mid 3=13$

### 3.24 Find averages and range from a table

| Mark( $x$ ) | Frequency $(f)$ | $f x$ |
| :---: | :---: | :---: |
| 7 | 1 | $1 \times 7=7$ |
| 8 | 6 | $8 \times 6=48$ |
| 9 | 5 | $9 \times 5=45$ |
| 10 | 8 | $10 \times 8=80$ |
|  | $\sum f=22$ | $\sum f x=180$ |

- Mean $=\Sigma f x \div \Sigma f$
$=180 \div 22$
$=8.2$ marks
- Mode $=10$ marks
- Median $=22+1=23\left(23 \div 2=11.5^{\text {th }}\right.$ mark $)$
$=9$ marks
- Range $=10-7=3$ marks
3.25 Compare distributions using a measure of average and a measure of spread
- Compare an average of each distribution e.g. mean, median, mode
- Compare the spread of each distribution e.g. range
- Make sure comments relate to the context e.g. the boys are taller on average than the girls since the mean is larger for the boys
3.26 Sum of mutually exclusive outcomes $=1$
- If 2 outcomes cannot occur together, They are mutually exclusive
- If 2 outcomes A and B are mutually exclusive
$P(A)+p(B)=1$
- If 3 outcomes $A B$ and $C$ are mutually exclusive

$$
P(A)+p(B)+p(C)=1
$$

e.g. If outcomes $A, B$ and $C$ are mutually exclusive and
$p(A)=0.47$
$p(B)=0.31$
$p(C)=1-(0.47+0.31)$
$=1-0.78$
$=\underline{0.22}$

